Agonism of human pregnane X receptor by rilpivirine and etravirine: Comparison with first generation non-nucleoside reverse transcriptase inhibitors

Devinder Sharma a, Aik Jiang Lau a, Matthew A. Sherman b, Thomas K.H. Chang a,*

aFaculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
bTriangle Research Labs, LLC, Research Triangle Park, NC 27709, USA

ABSTRACT
Rilpivirine and etravirine are second generation non-nucleoside reverse transcriptase inhibitors approved recently by the United States Food and Drug Administration for the treatment of human immunodeficiency virus-1 infection. Pregnan X receptor (PXR) is a member of the superfamily of nuclear receptors that regulate the expression of various genes controlling diverse biological functions. The present study investigated the effects of rilpivirine and etravirine on the activity of human PXR (hPXR), including the mode of activation, and compared them to those of efavirenz, nevirapine, and delavirdine, which are first generation non-nucleoside reverse transcriptase inhibitors. In transiently transfected HepG2 cells, rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, activated human, mouse, and rat PXR. Results from mechanistic studies indicated that rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, bound to the ligand-binding domain of hPXR, as assessed by a transactivation assay and by a competitive ligand-binding assay using time-resolved fluorescence resonance energy transfer; triggered nuclear translocation of a green fluorescence protein-tagged hPXR, as visualized by confocal imaging; and recruited steroid receptor coactivator-1 (SRC-1), SRC-2, and SRC-3 to hPXR, as demonstrated by mammalian two-hybrid assays. Rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, increased hPXR target gene (CYP3A4) expression in primary cultures of human hepatocytes. In summary, select non-nucleoside reverse transcriptase inhibitors activated human and rodent PXR. Rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, were identified as agonists of hPXR, as assessed in mechanistic experiments, and inducers of CYP3A4, as determined in primary cultures of human hepatocytes.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) still remains one of the leading causes of mortality in humans, claiming an estimated 1.8 million lives annually [1]. Unfortunately, a cure for this disease has not been found yet; however, the current therapeutic options are able to suppress viral load and increase Cluster of Differentiation 4 (CD4) counts in HIV/AIDS patients [2]. An important class of drugs that is routinely used for the treatment of HIV-1 infection, along with other anti-retroviral drugs, is the non-nucleoside reverse transcriptase inhibitors [3]. Efavirenz, nevirapine, and delavirdine (Fig. 1) are first generation non-nucleoside reverse transcriptase inhibitors approved for clinical use by the United States Food and Drug Administration (U.S. FDA). The most recent additions to this drug class are rilpivirine and etravirine (Fig. 1), which were approved for clinical use by the U.S. FDA in May 2011 [4] and January 2008 [5], respectively. Rilpivirine and etravirine, like other non-nucleoside reverse transcriptase inhibitors, inhibit HIV-1 reverse transcriptase enzyme allosterically [5]. They are potent second generation non-nucleoside reverse transcriptase inhibitors. A therapeutic option is to use rilpivirine in combination with other anti-retrovirals. Recently, the U.S. FDA approved a rilpivirine-based triple drug combination with the brand names of Complera® (containing 25 mg rilpivirine, 300 mg tenofovir disoproxil, and 200 mg emtricitabine; available in the U.S.A.) and Eviplera® (containing 25 mg rilpivirine, 245 mg tenofovir disoproxil, and 200 mg emtricitabine; available in the European Union) for the treatment of HIV-1 infection [4]. Like rilpivirine, etravirine is...
reported to be effective in both non-nucleoside reverse transcriptase inhibitor-naive and non-nucleoside reverse transcriptase inhibitor-resistant strains of HIV-1, and it is used in combination with other anti-retrovirals [6].

Nuclear receptors represent a broad group of ligand-activated transcriptional factors and are categorized as endocrine receptors, adopted orphan receptors, and orphan receptors [7]. They play a key regulatory role in various biological processes, ranging from development and differentiation to metabolic homeostasis. Pregnane X receptor (PXR; designated as NR1I2 according to the nomenclature of nuclear receptors) is a member of the superfamily of nuclear receptors [8]. It acts as xenobiotic sensors and regulates expression of genes involved in drug transport, such as ABCB1 (P-glycoprotein) [9] and ABCC2 (MRP2) [10], and those involved in drug metabolism, such as CYP3A4 [11–13]. Other than playing a major role in many of the pharmacokinetic drug interactions [14], PXR has been linked to the development of bile acid toxicity [15], drug-induced hepatotoxicity [16], and anticancer drug resistance [17]. It has also been proposed as a therapeutic target for various disease states, including cholestatic liver disease [18], inflammatory bowel disease [19], and dyslipidemia [20].

Among the first generation non-nucleoside reverse transcriptase inhibitors, efavirenz has been reported to activate human PXR (hPXR) [21–23]. By comparison, nevirapine only weakly activates hPXR, and this occurs not at a therapeutic concentration (7.5 μM) [23], but at a suprapharmacological concentration (50 μM) [22]. However, the mechanism on how these drugs activate hPXR is still not known. In a recent study, treatment of primary cultures of human hepatocytes with etravirine (10 μM) increased CYP3A4 mRNA expression [24]. This increase in CYP3A4 mRNA expression by etravirine was attenuated by pretreatment with sulforaphane [24], which is an in vitro antagonist of hPXR [25]. However, there is no direct experimental evidence as to whether the second generation non-nucleoside reverse transcriptase inhibitors (i.e. rilpivirine and etravirine) affect the transcriptional activity of PXR or how they may activate hPXR.

In the present study, we systematically evaluated the effects of rilpivirine and etravirine on the activity of hPXR, including their mode of activation, and compared them to those of first generation non-nucleoside reverse transcriptase inhibitors; i.e., efavirenz, nevirapine, and delavirdine. Given that PXR is known to show pronounced species-dependence activation by drugs and other chemicals [26], we determined whether rilpivirine, etravirine, and other non-nucleoside reverse transcriptase inhibitors activate mouse PXR (mPXR) and rat PXR (rPXR). Our experimental approaches involved cell-based luciferase reporter gene assays, competitive ligand binding assay by time-resolved fluorescence resonance energy transfer (TR-FRET), in vitro nuclear translocation analysis by confocal microscopy, mammalian two-hybrid assay, and hPXR target gene (CYP3A4) expression analysis in human hepatocytes in culture. The results are discussed in the context of drug-dependent activation of human and rodent PXR by select non-nucleoside reverse transcriptase inhibitors and their mode of activation.

2. Materials and methods

2.1. Chemicals and reagents

Rilpivirine, etravirine, efavirenz, nevirapine, and delavirdine were purchased from Toronto Research Chemicals Inc. (North York, ON, Canada). Dextran, Triton X-100 (Union Carbide Corporation,
Houston, TX, U.S.A.), rifampin, pregnenolone 16α-carbonitride (PCN), 4-pregnene-20β-ol-3-one, sodium phenobarbital, and dimethyl sulfoxide (DMSO) were procured from Sigma-Aldrich (St. Louis, MO, U.S.A.). Tetraethyl 2-(3,5-di-tert-butyl-4-hydroxyphenyl) ethyliden-1,1-bisphosphonate (SR12813) was obtained from Enzo Life Sciences International, Inc. (Plymouth Meeting, PA, U.S.A.). Testosterone and 6β-hydroxytestosterone were purchased from Steraloids (Newport, RI, U.S.A.). Cytotoxicity Detection Kit (LDH) and FuGENE 6 transfection reagent were purchased from Roche Diagnostics (Laval, QC, Canada). Matrigel basement membrane matrix was obtained from BD Biologics (Mississauga, ON, Canada). Hanks’ balanced salt solution (HBSS), PureLink RNA Mini Kit, PicoGreen Double-Stranded DNA Quantification Kit, LanthaScreen TR-FRET PXR Competitive Binding Assay, and ProLong® Gold antifade reagent with 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) were procured from Life Technologies (Burlington, ON, Canada), and the Dual-Luciferase Reporter Assay System was from Promega (Madison, WI, U.S.A.). Charcoal-stripped fetal bovine serum (HyClone Laboratories, Logan, UT, U.S.A.) was bought from Thermo Fisher Scientific (Nepean, ON, Canada), and all other reagents to culture HepG2 cells were obtained from Life Technologies (Burlington, ON, Canada). Cryopreserved hepatocyte thawing medium, hepatocyte plating medium, hepatocyte maintenance medium, and various medium supplements were provided by Triangle Research Labs, LLC (Research Triangle Park, NC, U.S.A.).

2.2. Plasmids

pCMV6-XL4-hPXR, pCMV6-entry-mPXR, pCMV6-AC-rPXR, pCMV6-AC-GFP-hPXR, pCMV6-XL4-hPXR, and pCMV6-entry were obtained from OriGene Technologies (Rockville, MD, U.S.A.). pFR-luc reporter was purchased from Agilent Technologies (Santa Clara, CA, U.S.A.). The internal control Renilla reniformis luciferase pGL4.74 [hRLuc/TK] plasmid was procured from Promega (Madison, WI, U.S.A.). The pGL3-basic-CYP3A4-XREM-luc reporter construct was prepared according to a published method [27]. pVP16-hPXR-LBD, pM-hSRC1-RID, pM-hSRC2-RID, and pM-hSRC3-RID were constructed as described previously [28,29]. The pVP16 and PM empty vectors were purchased from Clontech (Mountain View, CA, U.S.A.). The plasmid constructs were sequenced by the Nucleic Acid Protein Service Unit at the University of British Columbia (Vancouver, BC, Canada) and their sequence identity was confirmed by comparing with published sequence.

2.3. HepG2 cells

HepG2 human hepatocellular carcinoma cells (American Type Culture Collection, Manassas, VA, U.S.A.) were cultured in T-75 culture flasks in minimum essential medium supplemented with heat-inactivated fetal bovine serum (10%, v/v), penicillin G (100 U/ml), streptomycin (100 μg/ml), and l-glutamine (2 mM). Cells were maintained at 37 °C in a humidified incubator with 95% air and 5% CO2. Culture medium was changed every 3 days, and cells were sub-cultured weekly.

2.4. Determination of cytotoxicity of non-nucleoside reverse transcriptase inhibitors

Cultured HepG2 cells were plated in 24-well plates at a density of 100,000 cells/well. At 48 h post-plating, the cells were treated with DMSO (0.1%, v/v; vehicle control), a non-nucleoside reverse transcriptase inhibitor (rilpivirine, etravirine, efavirenz, nevirapine, or delavirdine; 0.1–25 μM), dextran (1%, w/v; negative control), or Triton X-100 (0.1%, v/v; positive control) in a volume of 0.5 ml culture medium. At the end of the 24 h treatment period, culture supernatant was collected and cells were lysed in 0.5 ml lysis buffer containing 2%, v/v Triton X-100 and 20 mM EDTA in phosphate-buffered saline (pH 7.4). LDH levels were quantified in the culture supernatant and cell lysate using the Roche Cytotoxicity Detection Kit (LDH, Roche Diagnostics, Laval, QC, Canada), as described earlier [28]. Results are expressed as the amount of LDH in the culture supernatant as a percentage of the total cellular LDH; i.e., sum of LDH in the culture medium and cell lysate. Each experiment was performed in triplicate and a total of three independent experiments were conducted.

2.5. Transient transfection and reporter gene assays

To investigate the effect of rilpivirine, etravirine, and other non-nucleoside reverse transcriptase inhibitors on the activity of hPXR, mPXR, and rPXR, HepG2 cells were plated onto 24-well microplates at a density of 100,000 cells/well in a volume of 0.5 ml of culture medium. At 24 h post-plating, cultured cells were transfected with a master mix containing FuGENE 6 transfection reagent (3 μl/μg of DNA), serum-free Opti-MEM (20 μl/well), pGL4.74 [hRLuc/TK] internal control vector (5 ng/well), a reporter construct (50 ng/well), and either a receptor expression plasmid or the corresponding empty vector (50 ng/well) for 24 h, as detailed in the appropriate figure legend. Transfected cells were treated with 0.5 ml of supplemented culture medium containing DMSO (0.1%, v/v; vehicle control), a non-nucleoside reverse transcriptase inhibitor (rilpivirine, etravirine, efavirenz, nevirapine, or delavirdine), a negative control, or a positive control at the concentrations indicated in the appropriate figure legend. At the end of the 24 h treatment period, HepG2 cells were lysed. Firefly luciferase and R. reniformis luciferase activities were quantified using a Dual-Luciferase Reporter Assay System (Promega, Madison, WI, U.S.A.). Luminescence was measured in a GloMax 96 microplate luminometer (Promega, Madison, WI, U.S.A.). Normalized luciferase activity was determined by calculating the ratio of firefly luciferase activity and R. reniformis luciferase activity. Background luciferase activity was determined in HepG2 cells transfected with the corresponding empty vector. Results are expressed as fold increase over the vehicle-treated control group. Each experiment was performed in triplicate and a total of three independent experiments were conducted.

2.6. hPXR-LBD transactivation assay

The hPXR-LBD transactivation assay was performed as described previously [30]. Briefly, cultured HepG2 cells were transfected with a master mix containing FuGENE 6 transfection reagent (3 μl/μg of DNA), serum-free Opti-MEM (20 μl/well), pGL4.74 [hRLuc/TK] internal control vector (5 ng/well), pFR-luc reporter (100 ng/well), and either the pM-hPXR-LBD (Met-107 to Ser-434) expression plasmid or the pM empty vector (100 ng/well) for 24 h. Transfected cells were treated with 0.5 ml of supplemented culture medium containing DMSO (0.1%, v/v; vehicle control), a non-nucleoside reverse transcriptase inhibitor (rilpivirine, etravirine, efavirenz, nevirapine, or delavirdine; 5 μM), PCN (10 μM; negative control for hPXR [26]), rifampin (10 μM; positive control for hPXR) [26], or SR12813 (10 μM; positive control for hPXR) [26] for 24 h. Firefly luciferase and R. reniformis luciferase activities were quantified as described above. Each experiment was performed in triplicate and a total of five independent experiments were conducted.

2.7. Competitive ligand-binding assay

A LanthaScreen hPXR competitive binding assay based on the principle of time-resolved fluorescence resonance energy transfer
(TR-FRET) was conducted as described previously [30]. A non-nucleoside reverse transcriptase inhibitor (rilpirivirine, etravirine, efavirenz, nevirapine, or delavirdine; 5 μM), PCN (10 μM; negative control), phenobarbital (1000 μM; positive control), SR12813 (10 μM; positive control), or DMSO (1%, v/v; vehicle control) was incubated with hPXR ligand-binding domain (5 nM), Fluoromone PXR Green (40 nM), terbium-labeled anti-glutatione transferase (10 nM), and dithiothreitol (0.05 mM) at ambient temperature for 1 h in the dark. TR-FRET was quantified using a PHERastar FS microplate reader (BMG Labtech GmbH, Allmendgruen, Germany) with the following settings: excitation wavelength, 373 nm; emission wavelengths 490 nm (terbium emission) and 520 nm (fluorescein emission); delay time, 100 μs; and integration time, 200 μs. TR-FRET ratio, background TR-FRET ratio, and net TR-FRET ratio were determined as detailed previously [30]. Data are expressed as percentage of the net TR-FRET ratio in the DMSO-treated control groups. Each experiment was performed in triplicate and a total of five independent experiments were conducted.

2.8. In vitro nuclear translocation of green fluorescence protein-tagged hPXR

HepG2 cells were cultured on poly-d-lysine-coated glass cover slips in 24-well plates at a density of 25,000 cells/well. At 24 h post-plating, cultured HepG2 cells were transfected with a master mix containing FuGENE 6 transfection reagent (3 μl/μg of DNA), serum-free Opti-MEM (20 μl/well), and pcMV6-AC-GFP-hPXR (green fluorescence protein-tagged hPXR; 50 ng/well) for 24 h. Transfected cells were treated with 0.5 μl of supplemented medium containing DMSO (0.1%, v/v; vehicle control), a non-nucleoside reverse transcriptase inhibitor (rilpirivirine, etravirine, efavirenz, nevirapine, or delavirdine; 5 μM), PCN (10 μM; negative control for hPXR) [26], or rifampin (10 μM; positive control for hPXR) [26] for 24 h. Subsequently, the cells were fixed with p-formaldehyde (4%, v/v) for 20 min on ice. After three washes in phosphate-buffered saline (pH 7.4), the cover slips containing cells were mounted on glass slides using ProLong® Gold Antifade Reagent with DAPI. The cells were visualized under an Olympus FV10i confocal microscope interfaced with the Fluoview 10i software (FV10i version 1.2c) and analyzed using the NIH, ImageJ software (National Institutes of Health, U.S.A.).

2.9. Mammalian two-hybrid assay

Recruitment of steroid receptor coactivator-1 (SRC-1), steroid receptor coactivator-2 (SRC-2), and steroid receptor coactivator-3 (SRC-3) to hPXR was assessed by a mammalian two-hybrid assay [29]. Briefly, at 24 h post-plating, cultured HepG2 cells were transfected with pGL4.74 [hBluc/TK] internal control vector (10 ng/well), pFR-luc reporter plasmid (100 ng/well), a coactivator expression plasmid (10 ng/well), and either pVP16-hPXR-LBD expression plasmid or the corresponding pVP16 empty vector (40 ng/well). The coactivator expression plasmids were pM-hSRC1-RID, pM-hSRC2-RID, and pM-hSRC3-RID. At 24 h post-transfection, cells were treated with supplemented culture medium containing DMSO (0.1%, v/v; vehicle control), a non-nucleoside reverse transcriptase inhibitor (rilpirivirine, etravirine, efavirenz, nevirapine, or delavirdine; 5 μM), PCN (10 μM; negative control for hPXR), rifampin (10 μM; positive control for hPXR), or SR12813 (10 μM; positive control for hPXR) for 24 h. Luciferase activity was measured and normalized as described under Transient Transfection and Reporter Gene Assays. Each experiment was performed in triplicate and a total of five independent experiments were conducted.

2.10. Culture and treatment of human hepatocytes

The demographics of the donors (GC4008 and HUM4021) are listed in Table 1. Cryopreserved human hepatocytes (Triangle Research Labs, LLC, Research Triangle Park, NC, U.S.A.) were thawed and plated according to protocols listed at http://triangleregearchlabs.net/products/cryopreserved-hepatocytes/. Cell viability was 88% and 90% for hepatocyte samples GC4008 and HUM4021, respectively, as assessed by trypan blue exclusion [31]. Hepatocytes were plated and cultured at a density of 3.5 × 10⁷ cells per well in a BioCoat 24-well plate at 37 °C in a humidified incubator with 95% air and 5% CO₂. They were allowed to attach for 4 to 6 h. Subsequently, the medium was aspirated and 0.5 ml of fresh hepatocyte maintenance medium (Triangle Research Labs, LLC, Research Triangle Park, NC, U.S.A.) and Matrigel (0.25 mg/ml) were added to each well. Plates were placed in the incubator, and this was followed by a change in the culture medium on Day 2 and drug treatment was initiated on Day 3. Cultured hepatocytes were treated with hepatocyte maintenance medium containing DMSO (0.1%, v/v; vehicle control), a non-nucleoside reverse transcriptase inhibitor (rilpirivirine, etravirine, efavirenz, nevirapine, or delavirdine; 5 μM), or rifampin (10 μM; positive control for CYP3A4 expression [32]), as described in the figure legend. The drug-containing culture medium was replaced every 24 h and the treatment was continued for 48 h for hepatocyte sample GC4008 and 72 h for hepatocyte sample HUM4021.

2.11. Isolation of total RNA, reverse transcription, and real-time PCR analysis

RNA isolation and reverse transcription were conducted as described previously [28]. Briefly, cultured human hepatocytes were lysed and total cellular RNA was isolated using PureLink RNA Mini Kit (Life Technologies, Burlington, ON, Canada). Total RNA was reverse-transcribed using Superscript II reverse transcriptase, and total cDNA was quantified using PicoGreen Double-Stranded DNA Quantitation Kit (Life Technologies, Burlington, ON, Canada).

The sequences of the primers used to amplify CYP3A4 cDNA [33] and HPRT1 cDNA [34] were specified in our previous publication [28]. The sequence of the forward primer to amplify the cDNA of 18s rRNA was 5'-CTT-TGG-CTC-GCT-CCT-C-3', whereas the sequence of the reverse primer was 5'-CTG-ACC-GGG-TTG-ATT-AT-3'. The primers were synthesized and their specificity was verified by sequencing the purified amplicons (Integrated DNA Technologies, Inc., Coralville, IA, U.S.A.).

CYP3A4 cDNA and HPRT1 cDNA were amplified by real-time PCR in a LightCycler (Roche Diagnostics, Laval, QC, Canada) according to conditions described previously [28]. To amplify the cDNA of 18s rRNA, each PCR reaction contained 1 ng total

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Demographics of human hepatocytes donors.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor identification</td>
<td>Race</td>
</tr>
<tr>
<td>GC4008</td>
<td>Caucasian</td>
</tr>
<tr>
<td>HUM4021</td>
<td>Caucasian</td>
</tr>
</tbody>
</table>

¹ Body Mass Index.
cDNA, 1 U Platinum Taq DNA polymerase in 1 × PCR buffer (20 mM Tris–HCl, pH 8.4 and 50 mM KCl), 3 mM MgCl₂, 0.2 mM deoxy-
nucleoside triphosphate, 0.25 mg/ml bovine serum albumin, 0.2 μM forward and reverse primers, and 1:30,000 SYBR Green I. The PCR cycling conditions were 95 °C for 5 min, followed by 40 cycles of 95 °C for 1 s, 62 °C for 6 s, and 72 °C for 10 s. To construct calibration curves (cross point versus log cDNA copies), CYP3A4, HPRT1, and 18s rRNA were purified and quantified as described previously [35]. CYP3A4 mRNA expression was normalized to that of housekeeping genes (HPRT1 and 18s rRNA).

2.12. Testosterone 6β-hydroxylation assay

Testosterone 6β-hydroxylation assay was conducted in cultured human hepatocytes as described previously [28]. Briefly, cultured human hepatocytes were first washed twice with HBSS and subsequently incubated with testosterone (200 μM final concentration) for 15 min at 37 °C. The incubation samples were then transferred to a 24-well plate and stored at -80 °C until analysis. High-performance liquid chromatographic (HPLC) analyses of 6β-hydroxytestosterone was performed as described previously [35], but with several modifications. In the present study, 4-pregnen-20β-ol-3-one (in acetonitrile) was selected as the internal standard based on its structural similarity to the analyte (6β-hydroxytestosterone), and 10 μl of the internal standard (2000 pmol) was added to 150 μl of the hepatocytes incubation sample. A 50 μl of that sample was injected onto the HPLC. The detector response of the internal standard was used to normalize the detector response of 6β-hydroxytestosterone. The HPLC system (Waters, Milford, MA, U.S.A.) was equipped with a Waters model 1525 binary pump, Waters model 717 plus autosampler, and Waters model 2487 dual wavelength absorbance detector. The chromatographic separation was carried out on a Waters SymmetryShield C18 column (150 mm × 4.6 mm; i.d., 5 μm) linked to a Phenomenex (Torrance, CA, U.S.A.) SecurityGuard cartridge (4.0 mm × 3.0 mm; i.d., 5 μm). The mobile phases consisted of water containing 0.5% (v/v) acetic acid (A) and methanol containing 0.5% (v/v) acetic acid (B), and the optimized flow rate was 0.8 ml/min. A gradient method was used to separate 6β-hydroxytestosterone from the internal standard and the matrix components with the following solvent conditions: linear gradient from 55 to 90% B (0–12 min), isocratic at 90% B (12–15 min), linear gradient from 90 to 55% B (15–16 min), and isocratic at 55% B (16–25 min). The detector response for 6β-
hydroxytestosterone and internal standard was recorded at a wavelength of 242 nm. Data acquisition and processing were conducted using the Waters Breeze software (version 3.20). A calibration curve was constructed with the authentic 6β-
hydroxytestosterone standard (100–12,500 pmol; diluted in HBSS) for each experiment.

![Fig. 2](image-url) Effect of non-nucleoside reverse transcriptase inhibitors on LDH release in HepG2 cells. Cultured cells were treated with varying concentrations (0.1–25 μM) of (A) rilpivirine, (B) etravirine, (C) efavirenz, (D) nevirapine, or (E) delavirdine for 24 h. The control treatments were DMSO (0.1%, v/v; vehicle for the non-nucleoside reverse transcriptase inhibitors), culture medium (vehicle for dextran and Triton-X), dextran (1%, v/v; negative control), and Triton X-100 (0.1%, v/v; positive control). LDH levels were measured in the culture medium and cell lysates, and the amount of LDH in the culture medium is expressed as a percentage of the total cellular LDH. Each experiment was performed in triplicate. Data are expressed as mean ± S.E.M percentage of total LDH content for three independent experiments. * significantly different from the control group treated with DMSO (P < 0.05).
2.13. Data analyses

The half-maximal effective concentration (EC_{50}) and maximal response (E_{max}) for hPXR activation were calculated using the following equation in GraphPad Prism® 5.00 (GraphPad Software, Inc., La Jolla, CA, U.S.A.): \[E = E_0 + \left(\frac{E_{max} - E_0}{1 + 10^{(\log E_{50} - C)}} \right) \]
where \(E \) is effect (i.e., fold increase over vehicle-treated control group), \(E_0 \) is basal effect, and \(C \) is drug concentration. Data analyses were performed by one-way or two-way analysis of variance. Where appropriate, two-way analysis of variance was followed by the Student–Newman–Keuls multiple comparison test (SigmaPlot 11.0; Systat Software, Inc., San Jose, CA, U.S.A.). The level of statistical significance was set at a priori at \(P < 0.05 \).

3. Results

3.1. Cytotoxicity assessment of rilpivirine, etravirine, and other non-nucleoside reverse transcriptase inhibitors

To determine non-cytotoxic concentrations of the selected non-nucleoside reverse transcriptase inhibitors for investigation in the subsequent in vitro cell-based reporter gene assays, release of intracellular LDH into the culture medium was employed as a cytotoxicity marker [31]. LDH release was quantified in cultured HepG2 cells treated with increasing concentrations (0.1–25 \(\mu \)M) of rilpivirine, etravirine, efavirenz, nevirapine, or delavirdine. LDH release did not increase at drug concentrations of up to 10 \(\mu \)M for rilpivirine (Fig. 2A), etravirine (Fig. 2B), efavirenz (Fig. 2C), nevirapine (Fig. 2D), or delavirdine (Fig. 2E). Expected results were obtained for the positive control (0.1% v/v Triton X-100; Fig. 2A–E) and the negative control (1%, w/v dextran; Fig. 2A–E). In all subsequent experiments, the concentration of the non-nucleoside reverse transcriptase inhibitors did not exceed 10 \(\mu \)M.

3.2. Rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, activate hPXR

The effect of rilpivirine and etravirine on the activity of hPXR was assessed in cell-based reporter gene assays and compared with an equimolar concentration (5 \(\mu \)M) of efavirenz, nevirapine, and delavirdine in hPXR-transfected HepG2 cells. As shown in Fig. 3A, rilpivirine and etravirine increased hPXR activity by 11- and 17-fold, respectively, over the vehicle-treated control group. Among the other non-nucleoside reverse transcriptase inhibitors tested, efavirenz (7-fold), but not nevirapine or delavirdine, activated hPXR. Rifampin (10 \(\mu \)M), a positive control for hPXR activation [13], produced a 20-fold increase over the vehicle-treated control group, whereas PCN (10 \(\mu \)M), a negative control [26], did not have an effect.

3.3. Concentration-response relationship in the effect of non-nucleoside reverse transcriptase inhibitors on hPXR activity

Concentration-response experiments were performed to further characterize the activation of hPXR by rilpivirine, etravirine, and efavirenz. As shown in Fig. 3B, rilpivirine, at concentrations of 0.05 and 0.1 \(\mu \)M, had no effect on the activity of hPXR, whereas it activated hPXR at greater concentrations (0.5–10 \(\mu \)M), with a maximal response of 11-fold produced at 5 \(\mu \)M. Etravirine had a profile similar to rilpivirine as 0.05 and 0.1 \(\mu \)M had no effect on hPXR activity, whereas greater concentrations (0.5–10 \(\mu \)M) of this drug activated hPXR, with maximal response (17-fold) produced at 5 \(\mu \)M. Efavirenz at a concentration of 0.5 or 1 \(\mu \)M had no effect on hPXR activity, whereas at 5 and 10 \(\mu \)M, it increased the activity by 7- and 10-fold, respectively. In contrast to rilpivirine, etravirine and efavirenz, neither nevirapine nor delavirdine activated hPXR at concentrations up to and including 10 \(\mu \)M (Fig. 3B).

The calculated EC_{50} and E_{max} values (mean ± S.E.M.) for rilpivirine-mediated hPXR activation were 0.4 ± 0.2 \(\mu \)M and 11 ± 1fold, respectively, whereas those for hPXR activation by etravirine were 0.6 ± 0.1 \(\mu \)M and 17 ± 1 fold, respectively. These values are comparable with the literature EC_{50} and E_{max} values for hPXR activation by rifampin [36], which is a prototypic hPXR agonist [13]. It was not possible to calculate the EC_{50} and E_{max} values for efavirenz because maximal effect was not achieved in our dose–response experiment (Fig. 3B).
3.4. Rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, activate mPXR and rPXR

Pronounced species-dependent chemical activation of PXR has been reported [26]. Therefore, we determined the effect of the non-nucleoside reverse transcriptase inhibitors (Fig. 3A and B) on the activity of mPXR and rPXR. Rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, activated mPXR (Fig. 4A) and rPXR (Fig. 4B). This pattern of response is similar to the profile shown for hPXR (Fig. 3A). PCN (10 μM), which is a positive control for ligand activation of mPXR and rPXR [37], activated both mPXR and rPXR, whereas rifampin (10 μM), which is a negative control [37], had no effect (Fig. 4A and B).

![Fig. 4. Activation of mPXR and rPXR by rilpivirine, etravirine, and efavirenz. Cultured HepG2 cells were transfected with (A) pGL3-basic-CYP3A4-XREM-luc, pGL4.74 [hRluc/TK], and either pCMV6-entry-mPXR, or pCMV6-entry (empty vector); or (B) pGL3-basic-CYP3A4-XREM-luc, pGL4.74 [hRluc/TK], and either pCMV6-AC-rPXR or pCMV6-AC (empty vector) for 24 h. Transfected cells were treated with DMSO (0.1%, v/v; vehicle control), a non-nucleoside reverse transcriptase inhibitor (rilpivirine, etravirine, efavirenz, nevirapine, or delavirdine; each at 5 μM), rifampin (10 μM; negative control), or PCN (10 μM; positive control) for 24 h. Firefly luciferase and R. reniformis luciferase activities were measured and normalized by calculating the ratio of firefly luciferase activity and R. reniformis luciferase activity. Background luciferase activity was determined in HepG2 cells transfected with the corresponding empty vector. Results are expressed as fold increase over the vehicle-treated control group. Each experiment was performed in triplicate. Data are expressed as mean ± S.E.M. for five independent experiments. *, significantly different from the same treatment group transfected with the mPXR or rPXR expression plasmid (P < 0.05).

![Fig. 5. (A) Effect of rilpivirine, etravirine, efavirenz, nevirapine, and delavirdine on transactivation of the ligand–binding domain of hPXR. Cultured HepG2 cells were transfected with pGL4.74 [hRluc/TK], pFR-luc, and either pm-hPXR-LBD or the pm empty vector for 24 h. Transfected cells were treated with DMSO (0.1%, v/v; vehicle control), a non-nucleoside reverse transcriptase inhibitor (rilpivirine, etravirine, efavirenz, nevirapine, or delavirdine; each at 5 μM), PCN (10 μM; negative control), rifampin (10 μM; positive control), or SR12813 (10 μM; positive control) for 24 h. Firefly luciferase and R. reniformis luciferase activities were measured and normalized by calculating the ratio of firefly luciferase activity and R. reniformis luciferase activity. Background luciferase activity was determined in HepG2 cells transfected with the corresponding empty vector. Results are expressed as fold increase over the vehicle-treated control group. Each experiment was performed in triplicate. Data are expressed as mean ± S.E.M. for five independent experiments. *, significantly different from the same treatment group transfected with the pm empty vector and from the vehicle-treated control cells transfected with pM-hPXR-LBD (P < 0.05). (B) TR-FRET analysis of the binding of rilpivirine, etravirine, and other non-nucleoside reverse transcriptase inhibitors to the ligand–binding domain of hPXR. A non-nucleoside reverse transcriptase inhibitor (rilpivirine, etravirine, efavirenz, nevirapine, or delavirdine; each at 5 μM), PCN (10 μM; negative control), phenobarbital (1000 μM; positive control), SR12813 (10 μM; positive control), or DMSO (0.1%, v/v; vehicle control) was incubated with human PXR ligand–binding domain (5 nM). Fluoromone PXR Green (40 nM), terbium-labeled anti-glutathione transferase (10 nM), and dithiothreitol (0.05 mM). Net TR-FRET ratio was determined by subtracting the background TR-FRET ratio from the TR-FRET ratio. Results are expressed as a percentage of net TR-FRET ratio in the vehicle-treated control group. Each experiment was performed in triplicate. Data are expressed as mean ± S.E.M. for three independent experiments. *, significantly different from the vehicle-treated control group (P < 0.05).]
3.5. Rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, transactivate the ligand-binding domain of hPXR

To investigate whether rilpivirine, etravirine, and efavirenz act as agonists of hPXR, a series of mechanistic experiments were performed, starting with a cell-based reporter gene assay whereby HepG2 cells were transfected with a plasmid (i.e. pM-hPXR-LBD; Met-107 to Ser-434) expressing the ligand-binding domain of hPXR. As shown in Fig. 5A, rilpivirine, etravirine, and efavirenz produced a 4.8-, 6.4-, and 3.5-fold increase in the luciferase activity, respectively. As expected, nevirapine and delavirdine had no effect on the transactivation of hPXR-LBD, consistent with data shown in a reporter gene assay using the full-length hPXR (Fig. 3A and B). The positive controls (10 μM rifampin and 10 μM SR12813) and the negative control (10 μM PCN) produced the expected results (Fig. 5A).

3.6. TR-FRET analyses indicate binding of rilpivirine, etravirine, and efavirenz to the ligand-binding domain of hPXR

To corroborate the hPXR-LBD transactivation data (Fig. 5A), a TR-FRET competitive ligand-binding assay was conducted. As shown in Fig. 5B, rilpivirine, etravirine, and efavirenz (each at 5 μM) decreased the net TR-FRET emission ratio to 48%, 58%, and 72% of the control level, respectively, whereas nevirapine and delavirdine had no effect. Analyses with positive controls indicate that phenobarbital (1000 μM) produced an effect (61% of the control level) comparable to that of rilpivirine, etravirine, and efavirenz, whereas SR12813 (10 μM) was the most effective (<1% of the control level). The negative control (10 μM PCN) yielded the expected result.

3.7. Rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, stimulate nuclear translocation of GFP-tagged hPXR

In its inactive form, hPXR resides mainly in the cytoplasmic compartment of the cells, and upon activation by an agonist, the agonist-activated receptor complex translocates from the cytoplasm into the nucleus [38]. According to confocal microscopy (Fig. 6), the GFP-tagged hPXR translocated to the nucleus in HepG2 cells treated with rilpivirine, etravirine, or efavirenz, as evident by the predominant localization of green fluorescence in the nucleus. A similar finding was obtained in cells treated with the positive control rifampin, in agreement with published data [39]. In contrast, the fluorescence was predominantly in the cytoplasm in GFP-hPXR-transfected cells treated with nevirapine, delavirdine, or PCN (negative control).

3.8. Rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, promote recruitment of coactivators to hPXR

To assess whether rilpivirine, etravirine, and efavirenz recruit coactivators to hPXR, mammalian two-hybrid assays were conducted. Rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, increased the luciferase reporter activity in HepG2 cells transfected with pVP16-hPXR-LBD and a coactivator expression plasmid for SRC-1 (Fig. 7A), SRC-2 (Fig. 7B), or SRC-3 (Fig. 7C). Experiments with the positive controls (10 μM rifampin and 10 μM SR12813) and negative control (10 μM PCN) yielded the expected results (Fig. 7A–C).

3.9. Rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, increase the expression of a hPXR target gene (CYP3A4) in cultured human hepatocytes

Primary cultures of human hepatocytes were used to compare the effect of first and second generation non-nucleoside reverse transcriptase inhibitors on the induction of CYP3A4, which is a known target gene of hPXR [11–13]. In sample GC4008 (Fig. 8A), rilpivirine, etravirine, and efavirenz increased CYP3A4 mRNA expression by 5.7-, 4.3-, and 1.8-fold, respectively, whereas nevirapine and delavirdine had no effect. A similar trend was observed in sample HUM4021 where rilpivirine, etravirine, and efavirenz increased CYP3A4 mRNA expression by 3.1-, 6.3-, and

Fig. 6. Localization of GFP-tagged hPXR in HepG2 cells treated with rilpivirine, etravirine, or a first generation non-nucleoside reverse transcriptase inhibitor. Cultured HepG2 cells were transfected with pCMV6-AC-GFP-hPXR for 24 h and treated with DMSO (0.1%, v/v; vehicle control), a non-nucleoside reverse transcriptase inhibitor (rilpivirine, etravirine, efavirenz, nevirapine, or delavirdine; each at 5 μM), PCN (10 μM; negative control), or rifampin (10 μM; positive control) for another 24 h. Subsequently, the cells were fixed with p-formaldehyde (4%, v/v) and mounted on glass slides using ProLong® Gold Antifade Reagent with DAPI for confocal microscopy. Shown are representative photomicrographs illustrating the localization of GFP-tagged hPXR, DAPI-stained nuclei, and merged images for each treatment group.
In Figure 7, Mammalian two-hybrid assay to evaluate the recruitment of steroid receptor coactivators to hPXR by rilpivirine, etravirine, and other non-nucleoside reverse transcriptase inhibitors. Cultured HepG2 cells were transfected with pGL4.74 [hRlus/TK], pFR-luc, a coactivator expression plasmid, and either pVP16-hPXR-LBD or pVP16 (empty vector) for 24 h. The coactivator plasmids were (A) pM-hSRC-1-RID, (B) pM-hSRC-2-RID, and (C) pM-hSRC-3-RID. Transfected cells were treated with DMSO (0.1%, v/v; vehicle control), a non-nucleoside reverse transcriptase inhibitor (rilpivirine, etravirine, efavirenz, nevirapine, or delavirdine; each at 5 μM), PCN (10 μM; negative control), rifampin (10 μM; positive control), or SR12813 (10 μM; positive control) for 24 h. Firefly luciferase and R. reniformis luciferase activities were measured and normalized by calculating the ratio of firefly luciferase activity and R. reniformis luciferase activity. Background luciferase activity was determined in HepG2 cells transfected with the corresponding empty vector. Results are expressed as fold increase over the vehicle-treated control group. Each experiment was performed in triplicate. Data are expressed as mean ± S.E.M. for five independent experiments. * indicates a significantly different result from the same treatment group transfected with corresponding empty vector and from the vehicle-treated control cells transfected with pVP16-hPXR-LBD expression plasmid (P < 0.05).

1.7-fold, respectively, and nevirapine and delavirdine had no effect (Fig. 8B). By comparison, rifampin (10 μM; positive control) increased the expression of CYP3A4 mRNA by 3.8-fold in sample GC4008 and 4.8-fold in sample HUM4021. The same overall pattern of response was obtained regardless of whether HPRT1 (Fig. 8A and B) or 18S rRNA (data not shown) was used as the reference gene to normalize the CYP3A4 mRNA data. CYP3A catalytic activity, as determined by the metabolic conversion of testosterone to 6β-hydroxytestosterone [40], was also measured. In sample GC4008, etravirine and efavirenz increased CYP3A catalytic activity by 2.5- and 2.8-fold, respectively (Fig. 8C), whereas rilpivirine and delavirdine decreased it and nevirapine had no effect. By comparison, in sample HUM4021, rilpivirine, etravirine, and efavirenz increased CYP3A catalytic activity by 3.1-, 3.9-, and 3.2-fold, respectively (Fig. 8D), whereas delavirdine decreased it and nevirapine had no effect. In the same experiment, rifampin increased CYP3A activity by 8.7- and 4.1-fold in samples GC4008 and HUM4021, respectively.

4. Discussion

PXR is a ligand-activated transcriptional factor belonging to the superfamily of nuclear receptors [8] and it is known to regulate the expression of biologically important genes [20]. We report for the first time that the second generation non-nucleoside reverse transcriptase inhibitors rilpivirine and etravirine act as orthosteric agonists of hPXR. This conclusion is based on the experimental evidence indicating that both rilpivirine and etravirine 1) bound to the ligand-binding domain of hPXR, as demonstrated by hPXR-LBD transactivation and TR-FRET competitive ligand-binding assay; 2) stimulated nuclear translocation of GFP-tagged hPXR into the nuclear compartment, as shown by confocal microscopy; and 3) recruited steroid receptor coactivators SRC-1, SRC-2, and SRC-3 to hPXR, as indicated by mammalian two-hybrid assays. Our concentration-response data indicated that rilpivirine and etravirine activated hPXR at a concentration range of 0.5–10 μM, with maximal effect observed at 5 μM. As a comparison, the steady-state maximum plasma concentrations of rilpivirine, etravirine, and efavirenz have been reported to be 0.30 ± 0.08 μM (mean ± S.D.) [41], 1.81 ± 0.66 μM (mean ± S.D.) [42], and 12.98 μM (95% confidence interval, 7.59–18.27 μM) [43], respectively, in specific studies conducted in HIV patients. Overall, our data show that rilpivirine and etravirine activate hPXR at low micromolar concentrations and by a mechanism that involves orthosteric agonism of the receptor.

Comparison of rilpivirine and etravirine with the first generation non-nucleoside reverse transcriptase inhibitors, such as efavirenz, nevirapine and delavirdine, revealed drug-specific agonism of hPXR by this class of anti-HIV drugs, as demonstrated by the mechanistic experiments in the present study. Among the five drugs investigated, only rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, were identified as agonists of hPXR. At an equimolar concentration (5 μM), the rank order in the activation of hPXR was etravirine > rilpivirine > efavirenz, based on data from our cell-based reporter gene assay. By comparison, as shown in the present study, nevirapine did not activate hPXR at ≤ 10 μM, in agreement with a previous study reporting a lack of an effect at 7.5 μM [23]. This drug weakly activates hPXR at a concentration of 50 μM [22]. Overall, it is interesting that despite the chemical diversity within the first and second generation non-nucleoside reverse transcriptase inhibitors [5], three out of the five drugs investigated are capable of activating hPXR. This not only points to the well-known broad substrate specificity of hPXR [44], but it also provides an opportunity to utilize this information to deduce the structure-activity relationship for newer non-nucleoside reverse transcriptase inhibitors that may be valuable in designing newer drugs in this class.

PXR has been reported to show remarkable species-dependent differences in the ligand-binding domain [26]. Illustrating this fact are the examples of rifampin and PCN. Rifampin is a well-known activator of hPXR, but it has no activity on mPXR or rPXR [37]. In contrast, PCN activates mPXR and rPXR, but not hPXR [37]. As assessed at an equimolar concentration (5 μM) in the present study, rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, activated mPXR and rPXR, a profile that is qualitatively similar to that obtained in our hPXR activation experiment. According to site-directed mutagenesis studies, Leu-308 [45] and Gin-285 [46] in the ligand-binding domain of hPXR, Ile-282 in the ligand-binding domain of mPXR [46], and Phe-305 and Asp-318 in the ligand-binding domain of rPXR [47] were identified as amino acids imparting ligand-dependent species-specific activation of PXR. Future in silico docking studies, including those that target these specific amino acid residues, may provide insights into the binding pattern of non-nucleoside reverse transcriptase inhibitors in the ligand-binding domain of hPXR, mPXR, and rPXR, and the
lack of species-dependent PXR activation by this class of anti-HIV drugs. Overall, our data suggest that it may be appropriate to utilize mouse and rat models to assess the biological interactions between hPXR and the non-nucleoside reverse transcriptase inhibitors rilpivirine, etravirine, and efavirenz.

As shown in our experiment with human hepatocytes in culture, agonism of hPXR by rilpivirine was associated with an increase in the mRNA expression of CYP3A4, which is a target gene of hPXR [11–13]. The increase was accompanied by an elevation in CYP3A4-mediated testosterone 6β-hydroxylation activity in hepatocyte sample HUM4021 (Fig. 8D), but a decrease in sample GC4008 (Fig 8C). The reason for this differential finding in testosterone 6β-hydroxylation activity is not clear, but perhaps rilpivirine elicits a non-genomic effect (e.g. mechanism-based inactivation) that dominates over the genomic effect (i.e. transcriptional increase in CYP3A4 gene expression) and accounts for the net decrease in testosterone 6β-hydroxylation that occurs after 2 days of drug treatment (Fig. 8C). Studies are planned to explore this possibility. The reported induction of CYP3A4 enzymes by etravirine [24] and present study) and efavirenz [21–23,48,49] in cultured human hepatocytes also occurs in vivo in humans, as inferred from pharmacokinetic studies. The administration of etravirine decreases the area under the plasma concentration-time profile for maraviroc [50], which is metabolized almost exclusively by CYP3A enzymes [51]. Similarly, human pharmacokinetic studies have shown that efavirenz increases the elimination of CYP3A substrates, as assessed by the erythromycin breath test [52], the metabolic formation of omeprazole sulfoxide from omeprazole [53], and the metabolic formation of 4β-hydroxycholesterol from cholesterol [54]. The lack of CYP3A4 induction by nevirapine at ≤10 μM in cultured human hepatocytes ([23] and present study) is consistent with a lack of an effect of therapeutic doses of this drug on CYP3A activity in vivo, as determined by the erythromycin breath test [55]. In the case of delavirdine at a concentration of ≤10 μM, this drug did not activate hPXR or increase CYP3A4 gene expression; rather, in our cultured human hepatocyte experiment, it decreased CYP3A-mediated testosterone 6β-hydroxylation, consistent with the identification of delavirdine as a CYP3A inhibitor in vivo in human subjects [56] and a CYP3A mechanism-based inactivator in vitro in microsomal incubations [57]. Overall, given that PXR plays a major role in regulating the expression of genes involved not only in drug transport and metabolism, but also in other biological processes [20], it will be important to assess the effects of rilpivirine and etravirine on the expression of hPXR target genes other than CYP3A4. Studies are currently underway to investigate in detail the functional consequences of hPXR activation by the second generation non-nucleoside reverse transcriptase inhibitors.

In summary, among the five non-nucleoside reverse transcriptase inhibitors investigated in the present study, rilpivirine, etravirine, and efavirenz, but not nevirapine or delavirdine, are activators of hPXR, mPXR, and rPXR. Agonism of hPXR by rilpivirine, etravirine, and efavirenz was demonstrated by the ability of these drugs to bind to the ligand binding domain of hPXR, promote nuclear translocation of GFP-tagged hPXR, and recruit receptor coactivators (SRC-1, SRC-2, and SRC-3). hPXR activation by rilpivirine, etravirine, and efavirenz was associated with induction of a hPXR target gene (CYP3A4). Overall, our novel
findings indicate ligand-dependent regulation of PXR function by select non-nucleoside reverse transcriptase inhibitors and provide insight into the molecular mechanism of hPXR activation by rifampicin, etravirine, and efavirenz. As activation of PXR and induction of target gene expression form the molecular basis of drug-drug interactions [14] and other biological actions [20], the results from the present study provide a rational basis for investigating novel actions of the second generation non-nucleo-
side reverse transcriptase inhibitors rifampicin and etravirine.

Acknowledgements

This research was supported by the Canadian Institutes of Health Research (Grant MOP-84581). T.K.H.C. received a Senior Scholar Award from the Michael Smith Foundation for Health Research. The authors thank Dr. Guixiang Yang for the construction of plasmids and Triangle Research Labs, LLC (Research Triangle Park, NC, U.S.A.) for the generous provision of cryopreserved human hepatocytes, specialty culture media, and the various culture medium supplements.

References